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Abstract. We analyse the behaviour of homogeneous and isotropic solutions to a gravity 
theory that arises from the variation of an arbitrary analytic function of the space-time 
scalar curvature. Such a theory generalises Einstein’s general relativity wherein this 
function is linear in the curvature. We prove conditions for the existence and stability of 
the general relativistic de Sitter and Friedman solutions within the general theory, prove 
necessary and sufficient conditions for the existence of cosmological singularities and 
particle horizons and analyse the asymptotic behaviour of ever-expanding universe models. 
The conditions under which Minkowski space-time and Schwarzschild space-time are 
stable is investigated and their instability, together with the pathological behaviour of 
certain cosmological models, traced back to the non-minimality of the stationary action 
giving rise to the field equations. The significance of these results for quantum theories 
of gravity and the ‘inflationary‘ model of the early universe is discussed. 

1. Introduction 

There have been many investigations into the stability of particular solutions of 
Einstein’s general relativity theory (GR) within the space of all solutions of the theory. 
Such studies are of particular interest in deciding how galaxies formed (Lifshitz 1946, 
Barrow 1980, Bardeen 1980, Peebles 198 1) and also generate interesting mathematical 
problems concerning the relationship between true solutions of GR and approximations 
that neighbour solutions with special symmetries (Barrow and Tipler 1979). In this 
paper we shall examine the existence and stability of homogeneous and isotropic 
cosmological solutions to GR with respect, not to perturbations within GR, but to 
perturbations of GR into a large class of metric gravity theories. We shall show that 
the familiar de Sitter and Friedman solutions almost always exist and, under fairly 
general circumstances, are stable. 

Einstein’s field equations of GR were first derived from an action principle by 
Hilbert in 1915, but this property isnot peculiar to Einstein’s theory. Indeed Poisson’s 
equation for the Newtonian gravitational potential 4 (x, t )  can be obtained by varying 
a Newtonian action functional SN with respect to 4, if we choose 

sN=-J [pu2-pq5 -(V4)’]d3x dt 

where U is the material velocity field, and p the mass density (87rG = 1 and c = 1 for 
the velocity of light throughout). 

@ 1983 The Institute of Physics 2757 
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Einstein’s Lagrangian for GR is a linear function of the four-curvature of space-time 
R :  

L E =  -2AC R (1.2) 

where A is a constant to be identified with the ‘cosmological constant’, the Einstein 
action is (see $ 2 for notational details) 

Since Hilbert’s recognition of this fact, there have been many attempts to create 
a natural generalisation of GR by considering the field equations that result upon 
varying an action functional that contains curvature invariants of higher than linear 
order in (1.2) (Lanczos 1938, Weyl 1921, Eddington 1924, Buchdahl 1948, Pais and 
Uhlenbeck 1950, Utiyama and De Witt 1962, Havas 1977, Stelle 1978). These 
particular investigations all considered the effect of ‘quadratic Lagrangians ’ involving 
some of the four possible second-order curvature invariants that can be created from 
the scalar, Ricci and Riemann curvature tensors: these are R 2 ,  R a a a b ,  RabcdRabcd 
and E ~ ~ ‘ ~ R ~ ~ ~ ~ R ~ ~  where E ~ ~ ‘ “ ‘  is the completely antisymmetric tensor of rank four. 
These investigations, and those that arise from them (Ruzmaikin and Ruzmaikina 
1970, Giesswein et a1 1974, Nariai and Tomita 1971, Gurovich 1977), had a two-fold 
purpose: first, as there is no a priori reason to restrict the gravitational Lagrangian 
to a linear function of R, one might expect that by including higher powers of R and 
related invariants, a more realistic representation of gravitational fields near curvature 
singularities (where R + CO) would be obtained. Perhaps singularities would disappear 
from these generalised theories? Second, some quantum corrections to Einstein’s GR 
are equivalent to augmenting the Einstein Lagrangian by higher-order curvature 
invariants (Sakharov 1967, Fischetti eta1 1979, Horowitz and Wald 1978, Stelle 1978, 
Weinberg 1979). This might lead us to expect that higher-order Lagrangians, subject 
to suitable constraints, would create a first approximation to some quantised theory 
of gravity. Analogously, we know that the quantum electrodynamical phenomenon 
of vacuum polarisation was described by introducing into the Lagrangian nonlinear 
combinations of the terms originally appearing linearly in the classical theory; in this 
case the classical electromagnetic field (E,  H )  Lagrangian L (Pechlaner and Sex1 1966) 

L = i ( E 2 - H 2 )  (1.4) 

generalises, with first-order quantum corrections, to include nonlinear combinations 
of the terms appearing in L, and becomes 

L’ = ~ ( E 2 - H 2 ) - k ( 2 a ~ / 4 5 m ~ ) [ ( E 2 - H 2 ) 2 + 7 ( E  - H ) ’ ]  (1.5) 

(where a, is the fine structure constant and me the electron mass). 
Most analyses of the gravity theories that arise from nonlinear Lagrangians have 

confined attention to Lagrangians that contain, at most, quadratic curvature invariants. 
However, the qualitative differences between the predictions of the quadratic theory 
compared with GR would lead one to expect further, equally large, changes if cubic 
curvature invariants were added to the quadratic theory and so on. On approach to 
a space-time singularity curvature invariants of all polynomial orders ought to play an 
important dynamical role and will, collectively, decide whether or not a real curvature 
singularity occurs. 
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In this paper we shall examine the cosmological models that result from a gravita- 
tional Lagrangian that is an arbitrary function of the scalar curvature, f ( R ) .  One of 
the advantages of this choice, aside from its obvious generality compared with earlier 
investigations, is that it also allows non-polynomial Lagrangians to be considered. 
Although polynomial Lagrangians might be anticipated to provide a reasonable 
approximation to the complete Lagrangian when the curvature is small (just as 
Einstein’s choice LE in (1.2) does), when it becomes large, quantum corrections to 
LE could lead to an effective Lagrangian whose predictions differ significantly from 
those of any theory with apolynomial Lagrangian. Our choice of f@) is not completely 
general, of course, because we exclude contributions from any curvature invariants 
other than R. To include them would be prohibitively complicated because the number 
of curvature invariants of dimension exceeding (length)-*“ increases very rapidly with 
n. The only limitation we shall need to assume in order to derive many of our results 
is that f be analytic; that is, it must possess a Taylor series expansion about any point. 
These restrictions are clearly not totally satisfactory, but they do enable us to take 
some first steps towards considering the effects of, as yet, uninvestigated higher-order 
curvature contributions. 

There are two wider applications of our results that are worth mentioning at this 
stage: our investigation into the existence and stability of the de Sitter vacuum solution 
of GR against terms introduced by the higher-order theories gives us information 
about the likely stability of ‘inflationary’ phases during the very early Universe (Guth 
1981, Linde 1982, Albrecht and Steinhardt 1982, Barrow and Turner 1982) in the 
presence of quantum gravitational corrections. Additionally, we note that there 
has recently been some interest (Nielsen 1981, Barrow 1983b) in the idea that 
there are really no laws of physics at all-that the Lagrangians of physical interactions 
are stochastic functions with the property that local gauge invariances (equivalent to 
conservation laws) are well approximated in the low-energy limit. Our investigation 
of arbitrary gravitational Lagrangians could be viewed in this light. In essence, our 
investigations are asking the question-suppose a completely arbitrary Lagrangian 
function of the curvature is chosen as the basis of a gravitation theory; how likely is 
it that the resulting theory has the Friedman solution, or something very much like 
it, as a stable solution at late times far from the initial singularity (if indeed there was 
initially such a singularity)? 

In 9: 2 we introduce the necessary definitions, notation and formalism together 
with some useful general equations. In 9: 3 we shall prove an existence theorem for 
the de Sitter cosmological solution of GR to exist as a solution of the general f ( R )  
Lagrangian theory of gravity and then examine the stability properties of any de Sitter 
solution that does exist. Section 4 examines the existence and stability of the Friedman 
solutions of GR in f ( R )  theories. We also investigate the asymptotic behaviour of 
these Friedman solutions for both large and small cosmic times and derive the 
conditions on f necessary for an initial big bang singularity. In § 5 ,  the existence and 
stability of Einstein’s static universe and flat Minkowski space are examined and the 
conditions for the stability of Minkowki space related to the behaviour of cosmological 
models in f ( R )  theories. Finally, in § 6,  some brief conclusions are drawn. 

2. Mathematical formalism 

In this section the notation and key equations required for subsequent analyses will 
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be given. Our GR sign conventions follow those of Weinberg (1972), so the metric 
signature is (- + + +); the Riemann tensor is defined by 

R t c d  = r:c,d - rtd,c + r x e  - r;,rR ( 2 . 1 )  
and the Ricci tensor by Rab = R:cb. Latin indices run over 0, 1 ,  2 ,  3 and we shall 
adopt units such that 8xG = c  = 1 .  

For the reasons outlined in 5 1 ,  we shall study the gravity theory that arises from 
a Lagrangian that is an analytic function of the Ricci scalar alone; so the gravitational 
action is: 

This class includes GR with non-zero cosmological constant when 

f ( R  ) = -2A + R .  (2.3)  
Moreover, any quadratic Lagrangian leading to an isotropic, homogeneous cosmologi- 
cal model is, in general, equivalent to the choice 

f ( R ) = - 2 A + R - & R 2  (2.4) 
with cy an arbitrary real constant. This simplification arises because the remaining 
quadratic curvature invariants can be expressed in terms of R 2  by using the following 
two identities, which hold for any four-dimensional space-time (De Witt 1965) 

(8/6gab) d4x J l - g ( ~  abcdRabcd - 4R abRab + R 2, = 0 ( 2 . 5 )  

(2.6) (6/6gab) I d4x J3.s abCdRabefRc/f = 0 

I d4x J G ( 3 R  abRab - R  2, = 0. 

and, in addition, for isotropic and homogeneous space-times, the identity 

(2 .7)  

If the space-time contains matter with action functional SM the energy-momentum 

Tab = ( - g ) - " 2 ~ s M / ~ g a b  (2.8) 
and the field equations arise on variation of the total action SG+SM. From (2.2) and 
(2.8) we have (Buchdahl 1970) 

(2.9) 

tensor of the matter is 

1 0 = Tab +flRab -3fgab  +f"(vaVJ? -ORgab)+f(VaRVJ? -V'RVCRgab) 

where 

0 E gab va v (2.10) 
and V ,  is the covariant differential operator. 

The field equations (2 .9)  are obtained by varying the metric alone ( ' g  variation'), 
with the connection always defined by the Christoffel relation. The Palantini variation, 
in which the metric and connection are varied independently, is plagued with difficulties 
when the Lagrangian is nonlinear in R (Buchdahl 1979). Notice that the form of 
(2.9) is influenced only by the first three derivatives of f ( R ) .  
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Our discussions will be almost entirely concerned with homogeneous and isotropic 
cosmological solutions to the field equations (2.9). The standard Friedman metric of 
GR is 

(2.11) 

where the spatial three-sections are closed, flat or open according as U = +1, 0 ,  -1. 
For this metric we find (a ,  p = 1 ,  2 ,  3 )  

ds2 = - d t 2 + a 2 ( t ) [ d r 2 / ( 1 - a r 2 ) + r 2 d @ 2 + r 2  sin2@ d~$'] 

Roo= 3 U U - l  R,, = -[(ai + 2d2 + 2 a ) ~ - ~ ] g , p  (2.12) 

R = -6a-'(aU + U 2 + a ) .  (2.13) 

If we note the useful relations 

OR = - (R + 3 a a - ' R )  

V,RV'R = -R2  

(2.14) 

(2.15) 

then the field equations (2.9) can be found explicitly. Symmetry dictates that only two 
of these equations are independent, which we take to be the trace of (2.9) and the 
(00) component. These are (Kerner 1982) 

Rf '-  2f + 3 f " ( R  + 3 a a - ' R )  + 3 f R 2  + T = 0 (2.16) 

f R o o + $ - 3 f " a ~ - ' R  + Too=O. (2.17) 

It can, furthermore, be verified that (2.16) follows from the differentiation of (2.17) 
with respect to t ,  so (2.17) is the only necessary field equation. In terms of the 
cosmological scale factor a ( t )  it reads 

f"(R)[a 'dZ+ ab2u - 2d4 - 2 d 2 a ]  + $'(R)a 3ii + &f(R)a4  + &a4TO0 = 0. 

fluid equation of state relating the pressure p to the energy density p, so 

(2.18) 
We shall confine our attention to cosmologies containing matter with a perfect 

P = YP = rToo 
and thus 

(2.19) 

TOO = poa Po constant. (2.20) -3(v+l)  

In the particular case of a quadratic Lagrangian and no cosmological constant 
(equation (2.4) with A = O), the field equation reduces to the form 

a-'(a2+cr) + aa-4(2a2aa+ 2aa2U - a2a2  - 3a4 - 2 a 2 a  + U 2 ) = p o a  1 -3 (v+l) ,  (2.21) 
The order of this equation can be lowered by eliminating the independent variable 

(Ruzmaikin and Ruzmaikina 1970). Introducing b ( x )  where 

b = (2.22) 

= a3(2&)-3/2 (2.23) 
and denoting dbldx by b',  (2.21) reduces to 
bll- (1/J5)b-'/3x-4/3U + b-5/3x-2/3 2 

U 

(2.24) +a-'(b-l/3X-2/3+2J3b-5/3U -bob-5/3x-V-1/3) = 0 

where 
(2.25) c0 ~ 2(1-3~)/2 (1 3 y ) / 4  3 - Po.  
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In subsequent sections we shall be interested in the existence and stability of 
solutions to equations (2.18), (2.21) and (2.24). To conclude our preliminary deriva- 
tions we write down the general stability equation for solutions of (2.18). We suppose 
that ao(f) is a particular exact solution of (2.18) and look for solutions of the form 

a ( t )  = ao(t)[l f F ( f ) ]  JF (t)l<< 1. (2.26) 

Linearising (2.18) about the exact solution, we obtain an ordinary differential equation 
for E ( t ) :  

AE‘+Bt+Ci+D& = O  (2.27) 

where 

A = -6f;la:Uo B =6ai(~oUof{ -aoUoRof;S’ -4f{U:) (2.28a, 6)  

C=ao(2a:dofb +aidof:  + 12~~bofg  +24difo” -24UoU%of;l’) (2 .284 

D (2.28d) 

where Ro is defined as a solution of (2.13) with a S U O ;  fo=f(Ro), f; 3 f’(R0) and so 
on, and we have assumed that f ( R )  can be expanded in a Taylor series in (R -&). 

- 2 ~ ~ 2 :  f h  - 12c~Uo~ofb: - 24~U:f; + 12~aoUodv ft  + ( y  + l ) p o ~ A - ~ ’  

3. de Sitter universes 

de Sitter’s solution to the vacuum Einstein equations with cosmological constant has 
proven to be of fundamental significance and recurrent physical interest; the first 
expanding universe model, it later provided a dynamical description of the steady-state 
cosmology and, most recently, it has emerged as a model for an ‘inflationary’ phase 
of the very early Universe. This last role has been created by the unusual phase 
portraits of grand unified gauge theories at high energy. As discussed by many authors 
(Guth 1981, Sato 1981, Linde 1982, Hawking and Moss 1982, Albrecht and Steinhardt 
1982, Barrow and Turner 1982), if the phase transition associated with the spontaneous 
breakdown of symmetry in a grand unified theory is first order, then a portion of the 
universe may find itself residing in a metastable symmetric vacuum state after the 
material cools below the grand unification energy, mu. This symmetric vacuum has 
an energy of order m:. As the Higgs field evolves slowly from this metastable vacuum 
state to the true, but asymmetric vacuum state of lower energy, the vacuum energy 
released dominates the cosmological dynamics and forces the scale factor a ( t )  to grow 
exponentially with proper time: 

(3.1) 

where m p =  l O I 9  GeV is the Planck mass. If the Universe remains in this de Sitter 
phase for long enough (a70tU),  then an explanation can be offered for the proximity 
of the present expansion to the Euclidean, Einstein-de Sitter form, its spatial 
homogeneity over dimensions larger than a gigaparsec, and the absence of an over- 
whelming cosmic abundance of magnetic monopoles with mass close to mu. 

When the vacuum energy difference dominates the dynamics it has a Lorentz 
invariant stress tensor equivalent to that of a perfect fluid with equation of state 

p v  = - p , .  (3.2) 

-2  
( t )  = exp(t/tu) t u  -- mpm 
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The stress tensor is 

( T a b  )v = Pvgclb.  ( 3 .3 )  

The continuity equation for the evolution of such a fluid shows p v  is constant, and 
so (3 .3 )  is equivalent to adding a cosmological constant term to the Einstein equations, 
of the form A g a b .  

During the period when the A term dominates the cosmic expansion it can be 
shown that no scalar, vector or tensor perturbations to the de Sitter evolution grow 
in time (Barrow 1983a, Gibbons and Boucher 1983);  that is, the de Sitter solution is 
stable although not, in fact, asymptotically stable. 

Starobinskii (1980)  has proposed a model in which m u  equals mp and inflation 
commences at the Planck epoch. He, and others, have imagined a de Sitter state 
evolving from t = -a until a phase transition occurs, whereupon it transforms into a 
Friedman universe. To examine the consistency of such a picture we must investigate 
the stability of de Sitter space to quantum gravitational corrections. With this in mind, 
we shall prove criteria for the existence, uniqueness and stability of de Sitter universes 
in gravity theories with an f ( R )  Lagrangian. 

3.1. Existence 

We require conditions for the existence of a maximally symmetric vacuum solution 
of the gravitational field equations; therefore, the Riemann tensor can be written 

(3 .4 )  

( 3 . 5 )  
From the Bianchi identities it follows that R is covariantly constant, so we have, say, 

R Ro. ( 3 . 6 )  

Rof’Wo) = 2f(Ro). (3 .7 )  

Using (2 .9 ) ,  these constraints ( 3 . 4 H 3 . 6 )  yield a simple existence condition: 

Thus, given any f ( R )  gravity theory, if there exists a solution R o  of (3 .7 )  then the 
theory contains the GR de Sitter solution with constant curvature Ro and with metric 
scale factor a ( t )  identical to the form taken in GR. In the Einstein case, ( 1 . 2 ) ,  we 
have simply 

Ro=4A. (3 .8 )  
The result (3 .7 )  has a number of interesting consequences. The solution need not be 
unique, for example f ( R )  equal to sin R leads to solutions with Ro, given by the 
countable infinity of solutions to 

tan Ro = Ro. (3 .9 )  
Equation (3 .7 )  is identically satisfied by the purely quadratic Lagrangian theory; that 
is, solutions exist for any Ro. For the pure power-law Lagrangian 

f ( R ) = A R ”  n > 2  (3 .10)  

there is only a solution for RO equal to zero. Finally, we remark that choices exist 
for f ( R )  for which there is no solution of ( 3 . 7 ) ,  for example exp(-R2). 
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As an aside, we can, in the spirit of the stochastic gauge theorists mentioned in 
0 1, ask how 'probable' it is that a randomly chosen f ( R )  gravity theory possess a de 
Sitter solution. When this question is suitably framed it can be answered quantitatively. 
Suppose we limit ourselves to polynomial Lagrangians of the form 

N 

f ( R ) =  1 anR"; 
n = O  

then solving (3.7) reduces to finding real solutions of the polynomial equation 
N 

( 2 - n ) ~ ~ ~ ;  = o .  
n = O  

(3.11) 

(3.12) 

Kac (1959) has considered the problem of calculating the probability that an nth-order 
polynomial with normally distributed coefficients possesses a real root. If the a i  in 
(3.1 1)  and (3.12) are normally distributed, N ( 0 ,  l), then the relative probability that 
(3.12) possesses n real roots (each will correspond to a constant curvature solution 
of the field equations) is 

This quantifies the simple fact that it is relatively rare for a polynomial of high order 
to possess real rather than complex pairs of roots. The distribution of their values 
peaks at +1 and -1 ,  reflecting the fact that (3.12) will be satisfied when each term is, 
on average, of similar magnitude but opposite sign. 

3.2. Stability 

We have shown that a general f ( R )  theory will often contain the GK de Sitter solution 
as a particular case. Now we wish to examine the conditions under which an extant 
solution of this type will be stable. 

It is sufficient to examine the zero curvature (a = 0) model?. In (2.26)-(2.28) we 
perturb the expansion scale factor so 

u ( t ) = e " * ( l + ~ ( r ) )  b l < 1  (3.14) 

and we have, therefore, 
2 Ro= -12m (3.15) 

and 

Solutions to (3.16) of the form exp(ht) exist for 

A = O  -?m *$[25m2+ (4fL/3f;)]"* (3.17) 
Thus, there can exist both growing and decaying perturbations to the GR de Sitter 
solution in general. An instructive example is the quadratic Lagrangian theory (2.4), 
where (3.17) shows that de Sitter solutions will be stable if a < O ,  but unstable if a > 0. 

+The (T = *l models correspond to different time slicings through the (T = 0 model. 



General relativistic cosmological theory 2765 

We shall now proceed to examine this stability in more detail. In the reduced variables 
(2.22)-(2.23) the general ((T f 0) de Sitter solution to GR has the form 

b(x) = x1/2(60x2/3-2J%)3/4 (3.18) 

p’,=-12A. (3.19) 

Again, it is sufficient to examine the stability of the U = 0 model in detail. Setting 

b(x) = xf(x) (3.20) 

and changing variables to 
2 x = e  (3.21) 

(the dot denotes d /dz)  we find that f (x)  must satisfy 

f’+f’+K(f-’/3-f-5/3) = 0 K = -12AC’.  (3.22) 

The constant K is an arbitrary parameter measuring the relative importance of the 
vacuum stress (A) and the nonlinear portion of the Lagrangian. If we introduce u(x) 
by writing (3.22) in the form 

f = u  = -U -K(f-’l3 - f-”/’) (3.23) 

then the critical points of this system occur when (U, f )  is (0,O) or (0 ,  1) .  The physically 
real critical point is (0 ,  l), and it corresponds to the de Sitter solution (3.18) with 
(T = 0. If we put f = 1 + 71 to move this point to the origin and linearise, then (3.23) 
become 

+ / = U  U = - U  - 4  3KT. (3.24) 

The characteristic equation of this system has roots 

A = $- 1 * (1 - 9 K )  ”’1. (3.25) 

This is equivalent to the general form (3.17) for quadratic f ( R ) .  We see there ark 
two distinct cases depending on the sign of K. 

K > 0. The critical point (0, 1) is a stable focus (see figure 1) .  
As z + CO so x + CO and a +CO,  and all solutions asymptotically approach the de Sitter 
solution of GR. If we alter the direction of time we see that the GR de Sitter solution 
will be unstable as x + -W. In this case the attracting focus in the phase portrait 
bifurcates either into a repelling node, for K E (A, CO), or a repelling focus for K E (0, &). 
K CO. The singular point ( 0 , l )  corresponding to the de Sitter solution of GR is a 
saddle point. The linearised behaviour in its vicinity is readily obtained. The full 
phase portrait is shown in figure 2. 

We see that all but a set of measure zero of the solutions deviate from the GR de 
Sitter point, (0, l), both as t + fo;) and t + --Co. To illustrate the general behaviour 
specifically we have found an exact solution of the system (3.22) when K = -3 (it is 
indicated in figure 2) 

f ( z )  = (42 +B)3/4 B constant. (3.26) 

It represents a typical late-time trajectory of the solution with a ( t )  of the form 

a ( t ) ~ ~ e x p [ ~ ~ ’ ~ t / 4 ~ - ~ ) ~ 1  P constant. (3.27) 
This behaviour is clearly pathological as t + CO, since expansion as a aexp(t2)  for t + CO 
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Figure 1. The phase-plane portrait of the system (3.23) when K > O .  Arrows denote the 
direction of increasing cosmic time. The critical point at (0, 1) corresponds to the zero 
curvature, (a  = 0). de Sitter space-time. 

leads to a scalar curvature singularity R -cia-' + 00 as t + 00. Therefore, in the cases 
covered by figure 2, the late-time behaviour is dominated by the influence of the 
quadratic curvature terms. This is a classic example of a singular perturbation problem: 
we have added higher-order curvature terms to the GR theory which, according to 
dimensional analysis alone, should become increasingly insignificant as a + 00, 

however, quite the opposite is true; see § 6 for further discussion of this point. 

Figure 2. The phase-plane portrait of the system (3.23) when K < 0.  Arrows denote the 
direction of increasing cosmic time. The critical point (0, 1) corresponds to the zero 
curvature, (a  = 0), de Sitter space-time. The particular exact solution for K = -3, given 
by equation (3 .26) ,  is indicated. 
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3.3. Asymptotic behaviour 

In order to gain some further perspective on the role played by the nonlinear curvature 
terms in the Lagrangian as t + CO we shall examine the asymptotic behaviour of (2.24) 
when y = -1 .  This corresponds to the late-time evolution of a vacuum, homogeneous 
and isotropic universe with a cosmological constant. The neglect of the matter terms 
is admissible because they become negligible for large t compared with other terms 
retained in (2.24). In  the limit of large a, in which the quadratic Lagrangian totally 
dominates the GR terms, the asymptotic behaviour is determined by (b’ = db/dx) 

(3.28) 

This is identical to the equation governing the behaviour of isotropic and homogeneous 
cosmological solutions to a quadratic Lagrangian theory with A = 0 and y <$ in the 
opposite limit, t + 0 (compare Frenkel and Brecher 1982). 

For U = 0 the general solution to (3.28) satisfying the necessary boundary condition 
b(0 )  = 0 imposed by the definitions (2.22)-(2.23) is 

b (x )=Ax  A constant. (3.29) 

This is simply the de Sitter solution studied in 9: 3.2.  
When U = *l, equation (3.28) possesses the special constant solutions 

b (x) = (4 - 2 ~ ) ~ ’ ~ 3 - ~ ’ ~ ~  ”*. (3.30) 

It is straightforward toshow that these constant solutions are always unstable solutions 
of (3.28). 

4. Friedman universes 

The Friedman cosmological model is the paradigm of modern theoretical cosmology. 
It provides an excellent description of the observable universe. However, it makes 
an unusual prediction regarding the state of the universe in the past; this prediction 
it shares with many other physically realistic cosmological solutions of GR (Hawking 
and Ellis 1973): i t  predicts a space-time singularity in our past. In  the Friedman 
models this singularity is accompanied by infinities in the matter density and scalar 
curvature. This degeneracy has motivated several studies of cosmological models in 
quadratic Lagrangian theories with the hope that the inclusion of higher curvature 
terms would exorcise the curvature singularities and produce space-times that are 
geodesically complete to the past and future. In 1970 Ruzmaikin and Ruzmaikina 
discovered some interesting properties of the spatially fiat, radiation-filled, 
homogeneous and isotropic solutions to the quadratic Lagrangian theory (2.4) with 
U = 0. They found that it was possible to avoid an initial singularity, but, if they did 
so, the models failed to approach the Friedman solution of GR ( a  a t  ”*), as t + 00. In 
fact, the situation was far worse: those solutions avoiding a singularity as t+O 
experience a curvature singularity in the future, R +CO as t + oo! We shall see that 
such pathologies are connected with the instability of flat Minkowski space and this 
renders such solutions physically inadmissible. If the flat, radiation solutions of the 
quadratic Lagrangian theory do possess an initial singularity then, at late times, they 
approach the standard Friedman model of GR. Similar conclusions were drawn for 
flat models by Nariai and Tomita (19711, and these analyses were duplicated by 
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Giesswein et a1 (1974). Subsequently, Giesswein and Streeruwitz (1975) also examined 
the evolution of some radiation models with positive and negative curvature using 
numerical methods. Fischetti et a1 (1979) have performed analyses of the flat quadratic 
solutions in the context of quantum cosmology, and they find that it is possible to 
have solutions which are horizon-free near the singularity. These results have been 
rediscovered recently by Frenkel and Brecher (1982). In  another sequence of papers 
Gurovich (1977) has examined the influence of logarithmic terms on the quadratic 
Lagrangian theory. He finds that, by adding a term to the Lagrangian of the form 
R 2  ln(R/R,), where R, is constant, models can be constructed that are singularity- 
free as t + O  and yet which also approach the GR Friedman solution at late times. 
This is possible because the logarithmic term in the Lagrangian can change its sign 
as R is greater or less than R,. As we have seen in li 3.2, it is the sign of the quadratic 
contributions to the curvature that controls the behaviour. Recall that our analyses 
are confined to analytic f ( R )  Lagrangians; although most of our results can be extended 
to include non-analytic cases like Gurovich’s we shall not give the details of these 
extensions. 

There have been a small number of investigations into the behaviour of anisotropic 
cosmological models when quadratic Lagrangians are postulated (Ruzmaikin 1977, 
Tomita et a1 1978, Gurovich and Starobinskii 1979, Buchdahl 1978). 

We shall now proceed to investigate the existence and properties of Friedman 
solutions to the general f ( R )  Lagrangian theories of gravity. 

4.1. Existence of Friedman solutions 

First, we demonstrate that if the energy-momentum tensor is truce-free then any 
homogeneous and isotropic solution of GR is also a solution of an f ( R )  theory provided 
f ( O ) = O  and f ’ ( O ) # O .  For, when TZ vanishes so does R and hence, by (2.16) and 
(2.17), we must have 

f (0) = 0 (4.1) 
and 

Roof’ + if = -poa -4 (4.2) 

p =poa-4=3p. (4.3) 

U = -po(3a3f‘(0))-* (4.4) 

where 

Now, using (2.12) for Roo we obtain, if f ’ (0 )  # 0, that 

and this is identical in form to the differential equation for u ( t )  in GR. Therefore, 
the cosmological solutions to the f ( R )  radiation models differ from those of GR only 
in the definition of the numerical constant. The Friedman radiation solution is an 
exact solution of any f ( R )  Lagrangian theory in which f ( 0 )  = 0 and f’(0) # 0. 

4.2. Stability 

Now we investigate the conditions necessary for the Friedman radiation solution to 
be a stable solution of an f ( R )  theory. Equivalently, we might ask when any open set 
of initial data about the GR Friedman solution will also contain models that evolve 
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towards the GR solution at late times. For simplicity, in this section we shall confine 
our attention to the flat (CT = 0) models. To examine the behaviour of perturbations 
to the Friedman solution we substitute into (2.26)-(2.27) the unperturbed Friedman 
radiation solution 

(4.5) 1 / 2  ao(t) = t 

and derive the perturbation equation from (2.27)-(2.28) 

If we introduce new variables 

z = t-3/4(&t). 
I f  1/2 ~ = c f h / 3 f o )  t = A t  

then by a redefinition of pa we may set 

4p0 = 9f&i2 

and (4.6) then reduces to the modified Bessel equation 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

d2z /dr2+r- '  d z / d r - ( 1 + 9 / 1 6 ~ ~ ) t  = O  (4.10) 

which has solutions 

= AI3/4(7) + BI-3/4(7) A,  B constants (4.11) 

where Ip is the modified Bessel function of the first kind, defined in terms of the 
standard Bessel functions Jp through 

I p ( x )  = i-'J,(ix). (4.12) 

The asymptotic form of 1*3/4(~) for large r gives a solution of the form 

z - e- ' (27r~)- ' /~[ l -  5/327 + O ( T - ~ ) ]  asr+oo.  (4.13) 

Therefore, (4.7) yields 

E - t-' J t1'4 exp(-At) dt (4.14) 

and the Friedman solution of GR will be stable if A > 0 but unstable if A G 0 (note 
that A 2  is only determined by the linear and quadratic pieces of f (R)) .  By way of 
illustration, consider the quadratic Lagrangian theory when A = 0, so 

f ( R ) = R  -&xR2. (4.15) 

We have 

A = (fb/3f%)1/2= (-CY)-"', (4.16) 

Thus, if CY < 0 we have A 2  > 0 and the Friedman GR solution is stable; but if CY > 0 
then A is imaginary and the Friedman solution is unstable. 

These results generalise those of Ruzmaikin and Ruzmaikina (1970) to general 
f(R ) Lagrangians and show that only the quadratic terms influence the stability in 
this case. Only when CY S 0 will the GR Friedman model be approached as 1 + CD. 
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4.3. Existence of singularities 

Suppose that, in the general f ( R )  Lagrangian theory, there exist homogeneous, 
isotropic cosmological models in which the expansion avoids a singularity and passes 
through a minimum of a ( t ) .  The scale factor will be expressible, for small times, in 
series form as 

(4.17) 

where the a, are all constant and a. # 0; that is, the model ‘bounces’ at a minimum 
radius a. and is singularity-free. To determine when such solutions are possible we 
substitute (4.17) in (2.18) and take the limit as t + 0; we obtain the following existence 
condition for a solution of the form (4.17) as t + 0 

(4.18) 0 = (1 lflS )(6fbaoa I + a ifo + 6Too) 

and so, iff; # 0 and the energy density Too is positive definite, we must have 

f o ~ o  + 6~ if; c 0 (4.19) 

where fo=f (Ro)wi thR+Roas t+O.  Using(2.13),we have 

R O = - ~ U ; ~ ( U ~ U ~ + U ) .  (4.20) 

Conditions (4.19) and (4.20) are the necessary conditions for a ‘bounce’ solution 
of the form (4.17). As an illustration, again consider the quadratic case (4.15); the 
bounce conditions (4.19)-(4.20) then reduce to the inequality 

~ c Y ~ ’ - u ~ u - ~ ~ c z : u ~  CO. (4.21) 

In particular, when U = 0 we have the simple condition CY > 0 for the avoidance of a 
singularity. We note that this is linked to the long-time stability of the solution 
established in (4.16). Any model with a > O  avoids a singularity as t + O ,  but does 
not approach the Friedman GR model as t + a; i n  fact, it suffers a future curvature 
singularity since a -exp(t2). However, this conclusion is altered when u # 0; then 
bounce solutiorls are possible for both U = +1  and U = -1 universes. The singularity 
can be avoided if the following conditions hold: 

u = + l  

CY > 0 and a arbitrary o r a  <-1/6a: a n d a l # O  (4.22) 

w = - 1  

a > 1 / 6 a :  a n d a l # O  a < 0 and U arbitrary (4.23) 

u=o 

a >o .  (4.24) 
Analogous conditions can be calculated explicitly for any f ( R  ) theory from equations 
(4.19) and (4.20). 

4.4. Horizons 

Fischetti et a1 (1979) and Frenkel and Brecher (1982) have looked for horizonless 
cosmological models in the limit t + O  when the Lagrangian is quadratic. We can 



General relativistic cosmological theory 277 1 

perform similar investigations for the general f (R ) theory by seeking solutions to 
(2.18) of the form 

a ( t ) = a l t + a z t Z + . . . + a ~ ‘ + . .  - ast+O. (4.25) 

If, for simplicity, we take the energy-momentum tensor to be that of a perfect fluid 
(2.19)-(2.20), then the condition for a solution with asymptotic form (4.25) to exist 
as t -* 0 is 

(4.26) 0 = 2aa: +2a: -poa1-3Y/6f”(R~). 

In general, this requires the strong restriction 
a 1-3v 

(-0 f”(R0) 
lim - - - constant 

with 
Ro = - 6 ~ ; ~ t - ~ ( a :  +a). 

(4.27) 

(4.28) 
1 Consider again the quadratic Lagrangian theory (4.15) where f 6  = -?a is constant. 

The condition (4.27) can only be satisfied in the quadratic theory if y = 4; that is, if 
the equation of state is that of black-body radiation. In this case we also require that 

(4.29) 

Therefore, in the flat and closed models we need the additional condition a <0, to 
remove horizons as t + 0, and in the open models we require a >po > 0. 

o = 4aa : + 4a41+ poa -’, 

4.5. Asymptotic behaviour 

At late times the evolution of homogeneous, isotropic cosmological models containing 
perfect fluids and with A = O  in the quadratic Lagrangian theory is given by the 
asymptotic form, as x +CO, of equation (2.23); that is 

0. (4.30) 

b = xg(x) x = e z  (4.31) 

d2b/dX2 +Ly-1b-1/3x-2/3 = 

If we put 

then (4.30) becomes 

d2g/dz2+dg/dz + ( ~ - ‘ g - ” ~  = 0. (4.32) 
The asymptotic form, when a < 0, is 

b(x) - ( - 4 / 3 ~ u ) ~ / ~ x ( l n  x ) ~ ’ ~  X + a ,  (4.33) 

a ( t )  - exp[(t - to)2/41a I2I3]. 

which corresponds to a scale factor a ( t )  increasing as 

(4.34) 
This solution contains a curvature singularity in the infinite future. 

5. Static cosmological models 

In this section we shall examine the existence and stability of static solutions to 
equation (2.18). This means we take the scale factor a ( t )  to be a constant, ao, say. 
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The solutions that then arise generalise the u = +1 Einstein static universe and the 
U = -1 Einstein universe of GR. 

Equations (2.16) and (2.17) will possess a static solution with scale factor a0 if 

R,,~L -2fo = -(3r - 1)poa;3(1+y1 

J o  = -poao 

(5.1) 

and 

(5.2) 1 -311+y) 

where Ro is equal to -6a;’u. By combining (5.1) and (5.2) we find the condition for 
the existence of this solution is that 

2Rofb = 3 ( r  + 1)fo. (5.3) 

For GR with a non-zero cosmological constant, (2.3), equation (5.3) becomes, for 
Equation (5.2) merely gives a definition of po in terms of ao. 

y f -5, 
Ro = - ~ u / u ( :  = 6(y + 1)A/(3y + 1). (5.4) 

When y = -; there is only a solution if A = 0, and in that case Ro is arbitrary. When 
y = -1 or A = 0 and y # -5 we must have U = 0 which just gives Minkowski space; 
otherwise we have 

U :  = - ( 3 y  f l ) u / ( y  + l ) A  ( 5 . 5 )  

yielding a unique closed solution when (3y + l ) / ( y  + l ) A  < 0 and a unique open solution 
when (37 + l ) / (y  + 1 ) A > O .  

For a quadratic theory (2.4) with A = 0 there are non-trivial solutions determined 
by the equation (Frenkel and Brecher 1982) 

R ~ = - ~ V / U :  = 6 ( 3 y + l ) / a ( 3 ~ - 1 )  y #$. (5 .6)  

When y = f there is only the trivial solution with Ro = po = 0.  Equation (5.6) yields 
a unique, open, closed or flat space-time depending on the sign of CY. 

We turn now to the stability of these solutions: inserting a = ao(l  + E )  into (2.18) 
where a0 satisfies (5.1) and (5.21, we find that both the constant and linear order 
terms vanish identically. The behaviour of the lowest non-vanishing order mode is 
governed by the quadratic term, so 

(5.7) 
If we seek solutions of the form E =exp(At) then we obtain a quadratic characteristic 
equation for A * .  There will exist exponentially growing modes unless both roots of 
this equation are negative, in which case the solutions oscillate but are undamped. If 
f6 is non-zero, both roots will be negative if and only if 

2uffll P * - if I P + +4[R if;; - ( y + 1 ) (3 y + 1 ) f”]& = 0. f ;; & p - ; f; & 2  - 

R : w + y ) ( l + 3 y ) f o / f ; ;  (5.8) 
and 

0 3 fllfl; + 12cr 

while iff: = 0 the condition for instability is just 

(5.9) 

0 3 (1 + y)( l+3y)fb.  (5.10) 
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Equation (5.3) dictates that for flat space to be a solution of the f ( R )  theory we 
require f ( 0 )  zero so (5.8) will always be satisfied. Hence from (5.9) we conclude that 
flat, static space is unstable if 

fblf6 > 0  (5.11) 

and will allow undamped oscillations if fb/f$ s 0. 
These results require careful interpretation: we notice from (2.3) and (5.10) that 

flat space is unstable even within GR, whereas in the quadratic theory, (2.4), with 
A = 0, flat space will be unstable if a < 0. We recall, from (4.24), that the Friedman 
solution of the quadraticf(R) theory avoided a singularity at t = 0, but had a pathologi- 
cal future singularity if a > O .  These are equivalent to the condition that flat space 
be stable. By perturbing a static solution to (2.16) and (2.17) we are equating instability 
with the tendency of a static space to begin expanding or contracting. Hence the GR 
static universe is clearly expected to be unstable. However, when a > 0 static universes 
will not be unstable in the quadratic Lagrangian theory. This situation requires 
pathological behaviour of the long-range gravitational field-in effect it needs to 
increase at large distances-and is associated with the future curvature singularities 
predicted in the a > 0 Friedman solutions. Therefore, we should require of a physically 
realistic gravity theory derived from an f ( R )  Lagrangian that it satisfy the flat space 
instability criteria (5.8)-(5.11). If these conditions are not satisfied then the theory 
will possess unphysical long-range behaviour. 

A specific example is provided by the Schwarzschild solution stability. Suppose 
we seek a static, spherically symmetric, vacuum solution to the general field equations 
(2.9). In the quadratic theory, (2.4), with A = O  the trace of (2.9) yields a single 
differential equation for R ( r ) ,  

V2R = Ra-'. (5.12) 

When a < 0 the solutions are bounded and decay as r +. CO; 

R ( r )  = r-'(A cos(r/J;) + B sin(r/d;)) A ,  B constant. (5.13) 

However, when a > 0 they are singular as r + a. The Schwarzschild solution of GR 
corresponds to choosing the particular solution R = O  in both (5.12) and (5 .13) ;  it is 
unstable when a > 0. 

It appears that when a > O  the action variation (2.2) leads to a stationary action 
(SS/Sg,, = 0) that is non-minimal (Ruzmaikin and Ruzmaikina 1970): 

s2s < 0. (5.14) 

When a < O  in the quadratic theory, the stationary action is also minimal. We 
conjecture that a necessary condition for the solutions of an f ( R )  Lagrangian gravity 
theory to be physically realistic is that the action functional variation be both stationary 
and minimal. 

6 .  Conclusions 

We have analysed the behaviour of homogeneous and isotropic solutions to the gravity 
theory that arises from the variation of an arbitrary analytic function of the scalar 
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curvature, f ( R ) .  Such a theory generalises Einstein’s general relativity (which arises 
when f is a linear function of R) and provides insight into the possible consequences 
of adding quantum corrections to the usual Einstein equations in the regime where 
R +a. We have ascertained the extent to which homogeneous and isotropic cosmo- 
logical solutions of the f ( R )  theory resemble those of general relativity at early and 
late cosmic epochs. 

The conditions were found under which the de Sitter, Friedman and Einstein static 
cosmological models were also solutions to the f ( R )  theory; and, in addition, when 
the solutions were stable, that is, when they approached the solutions of Einstein’s 
theory at late times as astronomical observations dictate they must. We also found 
necessary and sufficient conditions on f for the existence of initial big bang singularities 
and particle horizons in the cosmological solutions to the f(R ) theory. 

Our study of the asymptotic behaviour of the cosmological solutions as t + CO 

revealed that in general those models which avoid an initial singularity have pathologi- 
cal late time behaviour with R + CO as t + 43. These pathological theories also exhibit 
an instability for Minkowski space and Schwarzschild space. All these pathologies 
can be traced back to the fact that the field equations have arisen from an action 
functional whose variation is stationary but non-minimal. 

Finally, it is instructive to point out the similarity of some of our findings to the 
properties of singular perturbation problems of the sort that are common in hydro- 
dynamics (O’Malley 1974). The field equations (2.16)-(2.18) that arise when higher- 
order curvature terms are added to Einstein’s Lagrangian have the typical form 
exhibited by equations that possess singular perturbative properties; that is, they 
contain higher-order derivatives multiplied by some small parameter. In some cases 
we have found that the addition of higher-order curvature terms to the Einstein theory 
produces radically different behaviour at late times in cosmological solutions, even 
though dimensional analysis would suggest they are negligible in that limit. A simple 
example is provided by the equation 

- E y  + y  + y = 0 O S &  << 1.  (6.1) 

When E is zero the equation has exponentially decaying solutions 

but when E # 0 the general solution grows exponentially with time with an exponent 
that varies inversely with the small parameter 

(6.3) 

Dimensional analysis would have suggested that the ~y term is negligible with respect 
to y and y at large times. This type of behaviour can be seen explicitly in the solution 
of (4.30) given by (4.34): the approach to Einstein’s theory through the limit CY + O  
is singular. In some cases we have found such singular behaviour to be associated 
with unphysical aspects of Lagrangian theory of gravity, but that is by no means 
necessarily the case. The presence of singular perturbative behaviour in simple 
hydrodynamic problems shows that it is not just a manifestation of bad modelling or 
unphysical boundary conditions. Perhaps the possibility of such a situation offers a 
ray of hope to quantum gravity theorists seeking some present-day consequence of 
quantum modifications to the Einstein equations at the Planck epoch. 
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